Using of Factor Analysis Scores in Multiple Linear Regression Model for Prediction of Kernel Weight in Ankara Walnuts
نویسندگان
چکیده
Kernel weight is important for plant breeders to select high productive plants. The determination of relationships between kernel weight and some fruit-kernel characteristics may provide necessary information for plant breeders in selection programs. In the present study, the relationships between kernel weight (KW) and 7 fruit-kernel characteristics: Fruit Length, (FL,), Fruit Width (FW) Fruit Height (FH) Fruit Weight (FWe) Shell Thickness (ST), Kernel Ratio (KR) and Filled-firm Kernel Raito (FKR,), were examined by the combination of factor and multiple linear regression analyses. Firstly, factor analysis was used to reduce large number of explanatory variables, to remove multicolinearty problems and to simplify the complex relationships among fruit-kernel characteristics. Then, 3 factors having Eigen values greater than 1 were selected as independent or explanatory variables and 3 factor scores coefficients were used for multiple linear regression analysis. As a result, it was found that three factors formed by original variables had significant effects on kernel weight and these factors together have accounted for 85.9 % of variation in kernel weight.
منابع مشابه
Prediction of the waste stabilization pond performance using linear multiple regression and multi-layer perceptron neural network: a case study of Birjand, Iran
Background: Data mining (DM) is an approach used in extracting valuable information from environmental processes. This research depicts a DM approach used in extracting some information from influent and effluent wastewater characteristic data of a waste stabilization pond (WSP) in Birjand, a city in Eastern Iran. Methods: Multiple regression (MR) and neural network (NN) models were examined u...
متن کاملPrediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods
Slope stability analysis is an enduring research topic in the engineering and academic sectors. Accurate prediction of the factor of safety (FOS) of slopes, their stability, and their performance is not an easy task. In this work, the adaptive neuro-fuzzy inference system (ANFIS) was utilized to build an estimation model for the prediction of FOS. Three ANFIS models were implemented including g...
متن کاملComparison of Artificial Neural Network and Multiple Regression Analysis for Prediction of Fat Tail Weight of Sheep
A comparative study of artificial neural network (ANN) and multiple regression is made to predict the fat tail weight of Balouchi sheep from birth, weaning and finishing weights. A multilayer feed forward network with back propagation of error learning mechanism was used to predict the sheep body weight. The data (69 records) were randomly divided into two subsets. The first subset is the train...
متن کاملComparison of Artificial Neural Network and Regression Models for Prediction of Body Weight in Raini Cashmere Goat
The artificial neural networks (ANN) are the learning algorithms and mathematical models, which mimic the information processing ability of human brain and can be used to non linear and complex data. The aim of this study was to compare artificial neural network and regression models for prediction of body weight in Raini Cashmere goat. The data of 1389 goats for body weight, height at withers ...
متن کاملDetermination of the linear and non-linear relationships between soil erodibility factor and effective parameters on it in a mountainous watershed with severe soil erosion
Soil erodibility factor is a criterion of soil particle resistance to detachment, transport, and effects of erosivity factors (rain drop, runoff, and wind) during the soil loss processes. In this study, non-linear support vector machines (SVMs) method was used for investigating the effects of some topography, soil physical and mechanical properties on soil erodibility in a part of Northern Karo...
متن کامل